E.ON – Cleaner & better energy

Energy Trading
E.ON strategy

Transform European utility into global, specialized energy solutions provider
E.ON Group strategic priorities

Performance
- Intensify cost & quality management
- Simplify structures
- Execute portfolio measures
- Create balance sheet flexibility

Growth
- Capture growth in renewables & decentralized energies
- Exploit opportunities in new markets

Challenging markets
- Political interventions

Europe:
- System transformation

Outside Europe:
- Growth & new technologies
E.ON Group key financial targets

Results

<table>
<thead>
<tr>
<th>Year</th>
<th>Adjusted EBITDA (€bn)</th>
<th>Adjusted EPS (€/share)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011E</td>
<td>9.1 – 9.3</td>
<td>1.2 – 1.3</td>
</tr>
<tr>
<td>2013E</td>
<td>11.6 – 12.3</td>
<td>1.7 – 2.0</td>
</tr>
<tr>
<td>2015E</td>
<td>12.5 – 13.0</td>
<td>2.0 – 2.3</td>
</tr>
</tbody>
</table>

Dividends

<table>
<thead>
<tr>
<th>Year</th>
<th>Dividend payout policy (% adj. net income)</th>
<th>2011 (€/share)</th>
<th>2012 (€/share)</th>
<th>2013 (€/share)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50 – 60</td>
<td>1.0</td>
<td>≥1.1</td>
</tr>
</tbody>
</table>

Other

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium-term debt factor</td>
<td><3x</td>
</tr>
<tr>
<td>Investments 2011-13 (€bn)</td>
<td>~19</td>
</tr>
<tr>
<td>Total disposals until 2013 (€bn)</td>
<td>~15</td>
</tr>
<tr>
<td>Rating target</td>
<td>Solid single A</td>
</tr>
</tbody>
</table>

Transparent financial targets for coming years

Assumed 2015 debt factor allows ~€6bn of additional growth CAPEX

1. 2011 post €0.5bn effect of achieved disposals (€9.1bn)
2. 2013 Post €0.9bn effect of achieved disposals (€9.1bn)
3. 2015 Post ~€1.7bn effect of total disposals effect (€~15bn)
4. Pre disposals
Trading within E.ON group structure

1. Incl. EBITDA of all conventional generation (previously in Market Units)
2. Incl. hydro
3. Distribution and sales, gas sales included in Germany
4. Special focus country
5. IT, Procurement, Insurance, Consulting, Business Processes, these are not reported separately externally
6. “Outside Europe” to be reported separately after having reached the necessary size
Trading – Business strategy
Optimize commodities exposure and support business

Market environment
- Increasing scope and scale of integration of power markets across EU (e.g. market coupling between Nordic and CWE in November 2010)
- Increasing gas-to-gas competition in Europe
- Key commodities as well as LNG and CO2 traded on global markets

Strategic priorities
- Cross-regional and cross-commodity synergies: monetize value of flexibility in power plants, supply contracts, gas storage
- Seek new opportunities in cross-border activities (e.g. intra-day)
- Global commodity trading (e.g. coal & freight) backed by European portfolio
- Origination activities to earn higher margins on non-standard, non-commodity specific, longer term products

Leading energy trader
Trading – Sustainable value contribution

Leading energy trader
- One of the biggest and most diversified underlying power & gas asset positions
- Market access throughout Europe to capture synergies (e.g. reduction of credit risk)
- Global scope of trading to cover majority of E.ON’s commodity risk position
- Strong support of European liberalization agenda (e.g. engagement for market coupling)

Year on year increase in Trading’s volumes (2010 vs. 2009)
- Power: +19%
- Gas: +34%
- CO2: +30%
- Coal: +30%

Adjusted EBITDA (€ bn)
- 2010: 1.2
- 2011: 0.5
- 2013: -0.7

Distorting effect of transfer prices to normalize by 2013

2011
- Optimization result is negatively impacted by swing in internal transfer spread
- Extrinsic value suffering from reduced volatility
- Prop trading expected to improve compared to weak 2010

2012-2013
- Less distorted optimization result
Trading - E.ON’s optimization and prop. trading function

- **Cross-regional optimization**
 Single integrated view on all markets & physical assets
- **Cross-commodity optimization**
 Ability to realize benefits of correlation between commodities
- **Risk management**
 Integrated portfolio view and consistent risk/hedging strategy
- **Proprietary trading**
 Asset knowledge and understanding of market fundamentals

Adj. EBITDA development, 2008-2010 (€ m)

- Conventional Generation
- Renewables Generation
- Global Gas
- Germany
- Other EU countries
- Russia

Integration of trading expertise delivers additional value
Trading is E.ON’s centralized interface to the energy markets…

- **Upstream function**: Generation Unit, Global Gas
- **Optimization function**: E.ON Energy Trading
- **Downstream function**: Retail/sales subsidiaries

Trading sells product, market margin (achieved price minus transfer price) sits in EET.

Trading procures volumes for the E.ON supply businesses.

European energy markets: Power, Gas, Coal, CO₂, Oil

- Power/gas volumes (own & procured)
- Transfer price, fuel price and volumes

... backed by a strong portfolio of assets

1. In case of Global Gas gas volumes = upstream + procured
2. Conventional Generation and Renewables Generation
Trading creates value for E.ON

Value creation at E.ON Trading

- **Prop trading**
- **Optimization**
 - Arbitrage
 - Cross regional/border
 - Cross commodity
 - Timing decisions
- **Risk management**
 - Cash flow risk
 - Commodity risk
 - Counterparty risk
 - Hedging

Bulk of the value created at E.ON Trading comes from its risk management function and its (mainly) asset backed optimization function
Cross-regional optimization
Illustration via interconnectors

Involved assets
- **Kingsnorth**: coal- and oil-fired power plant, 1,940 MW
- **Maasvlakte (Rotterdam)**: coal-fired power plant, 1,040 MW
- **Vilvoorde**: coal-fired power plant, 556 MW
- **EET bids for transportation capacity on BritNed**

Optimization: use of balancing markets

Prerequisite
- Access to transportation capacity, e.g. BritNed

Idea
- Use of interconnectors (e.g. BritNed) to assist optimization and balancing of portfolios both for E.ON UK and E.ON Benelux
- Balancing power can be used to cover under- or over-supply situations in UK as well as in Benelux

Value points
- Cross-regional arbitrage
- Reduction of penalty costs for system imbalance

Reaping the value of a broad asset base via cross-regional arbitrage
Cross-commodity optimization
Arbitrage via gas-to-power optimization

Prerequisite
- Portfolio of gas- and coal-fired power plants
- Plan to generate with a gas-fired plant
- Gas volumes from a supply contract or market

Idea
- Coal becomes cheaper fuel to generate power in that period
- Decision: Sell the gas at a higher price and produce power with a coal-fired plant instead

Value points
- Margin from selling the gas
- Margin producing power with cheaper fuel (coal)

Reaping the value of a broad asset base via cross-commodity arbitrage
Cross-commodity and cross-regional optimization

Global coal arbitrage

Prerequisite
- Combines supply opportunities in Columbia/South Africa with demand in Europe/India
- Time charters offer shipment-flexibility to EET (leading to reduced transportation cost)

Idea
- Increase of dark spread or sales margin because of potential lower costs of coal supply, based on multi-sourcing strategy
- Arbitrage between API4, C4, API2:
 - e.g. buy API4 + C4, sell API2
 - buy API2, sell API4 + C4

Value points
- Improve dark spread by sourcing cheaper coal
- Cost reduction through time-charter optimization

Leverage our large underlying demand to profit from global arbitrage opportunities
Cross-commodity & cross-regional optimization

Enabling arbitrage via origination

Definition of origination
- Physical or financial commodity transactions of a "non standard nature" due to their scale, tenor or structure
- Transactions are of a longer term than traded curves, linked to physical assets or provide new optimization opportunities to the portfolio

Prerequisite
- Additional coal-fired power plant in region 1
 - the company’s asset portfolio in that region will be dominated by coal-fired units

Idea
- By entering a CCGT tolling agreement the fuel mix for region 1 can be enhanced
- Additionally the company’s long exposure to gas in region 2 is reduced by delivering volumes to the counterparty in region 1
- Generation portfolio improves without CAPEX

Value points
- Spark spread of the tolling agreement
- Portfolio-optimization value

Enhance portfolio value with origination structures instead of outright asset ownership
Hedging rationale

- **Ensure more stable earnings**
 - Hedging outright power risk strongly reduces y-o-y volatility in cash flows

- **Increase planning certainty**
 - Cash flow visibility needed to support capex planning

- **Reduce cost of capital**
 - For a given leverage hedging reduces the cost of capital

Trading’s function as a risk manager is value enhancing
Hedging at E.ON is a key tool for risk management…

Hedging nuclear & hydro plants

- Characterized by high **intrinsic** value and high value at risk (unhedged)
- High intrinsic value is function of low variable cost of assets
- Value captured and risk managed by hedging on forward markets depending on price view and risk appetite

Hedging flexible plants

- Characterized by relatively high share of **extrinsic** value
- Power plants represent real options. In case of flexible units (gas, coal) optionality has a real value ➔ extrinsic value
- Dynamic hedging strategies to capture intrinsic as well as extrinsic value

… but also for value creation
Dispatch optionality - key characteristic of flexible plants

A gas-fired unit

Hourly power price vs. generation cost (€/MWh)

Variable costs (gas + CO2 costs)

Planned hourly output (MW)

A nuclear unit

Hourly power price vs. generation cost (€/MWh)

Variable costs (nuclear fuel + fuel tax)

Planned hourly output (MW)

A power plant should run as long as the profit margin against variable costs is positive
Power plants are real options

• On the electricity market, the price is set hourly driven by the variable costs of the marginal power plant [i.e. the last plant required to meet demand]

• A power plant runs and earns a positive profit margin if the power price is above its variable costs

Pay-off of a power plant for a single hour

Profit margin (fix costs not considered)

Pay-off of nuclear plant

Pay-off of gas-fired plant

Power plant not operating

Power plant operating

Variable costs (nuclear fuel + fuel tax)

Variable costs (gas + CO2 costs)

Electricity price

Sources of value creation

Optimization

Risk management

Merit order of German power plants

(Order of power plants on the basis of variable costs)

Electricity price

[€/MWh]

- Hard coal
- Oil
- Lignite
- Nuclear
- Natural gas
- Run-of-river & renewables

Capacity [GW]

0 10 20 30 40 50 60 70 80 90 100

0

Power plants can be considered as European call options
Additional value is inherent in flexible power plants

- Intrinsic value is equal to the actual value of selling the underlying as forwards

- The expected profit at maturity is higher than the observed intrinsic value in forward market. The difference is the extrinsic value.

Extrinsic value is essentially the value of not needing to run the plant when it would make a loss.
Size of extrinsic value influenced by several factors 1/2

Hours of power plants that are nearly „at the money“ have higher extrinsic value
Size of extrinsic value influenced by several factors 2/2

2 - Volatility

- Less volatile price
- More volatile price

Reasoning
- Higher volatility increases the extrinsic value

3 - Time to Maturity

- Short time left before delivery
- Long time left before delivery

Reasoning
- Longer time to delivery increases extrinsic value

- The more volatile the price, the larger the probability that an option change from “in the money” to “out of the money” or vice versa.
Hedging focus of different types of generation assets

Different types of assets require different hedging focuses ...

... for which different hedging methods are utilized

<table>
<thead>
<tr>
<th>Influencing factors</th>
<th>Intrinsic value</th>
<th>Extrinsic value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power prices (nuclear, hydro) or spread prices (coal-, gas-fired)</td>
<td>Moneyness, volatility, time to maturity</td>
<td></td>
</tr>
<tr>
<td>Straightforward: hedge at forward markets</td>
<td>Complex: dynamic forward hedging, delta-hedging, etc.</td>
<td></td>
</tr>
<tr>
<td>Price view, risk appetite</td>
<td>Volatility view, risk appetite, hedge costs</td>
<td></td>
</tr>
</tbody>
</table>
How E.ON Trading captures intrinsic value

- Upper boundary given by available market liquidity
- Lower boundary given by Group risk bearing capacity and risk appetite
- Optimized hedge path with the aim to maximize risk-adjusted return

Capturing intrinsic value is hedging of the natural long position under risk/return principles
How to capture extrinsic value in flexible power plants

Example 1: Dynamic forward hedging

<table>
<thead>
<tr>
<th>Time</th>
<th>Spread price</th>
<th>Planned generations</th>
<th>Hegdes</th>
<th>Locked in profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>10</td>
<td>generate</td>
<td>sell spread (sell power, buy coal & CO2)</td>
<td>+10</td>
</tr>
<tr>
<td>t2</td>
<td>-2</td>
<td>not generate</td>
<td>unwind hedge (buy power, sell coal & CO2)</td>
<td>+2</td>
</tr>
<tr>
<td>t3</td>
<td>4</td>
<td>generate</td>
<td>sell hedge (sell power, buy coal & CO2)</td>
<td>+4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>total</td>
<td></td>
<td>+16</td>
</tr>
</tbody>
</table>

- Through forward hedging and rebalance of hedges according to actual economic generation, a part of extrinsic value can be captured in forward market.

On a long term average the extrinsic value can be captured. However, it is not guaranteed that the theoretical value can be captured in each time.

Example 2: Delta hedging

- Delta-hedging is a dynamic hedging strategy aimed at conserving the full value of a power plant, without taking a price view.
- By buying or selling the spread, the total position (power plant + spreads bought/sold) can be made delta-neutral, i.e. the value of the position does not change for small changes of the value of the underlying. If delta-neutrality is monitored and updated regularly, the full value of the power plant is conserved.

The extrinsic value can be captured each time. However a trade-off has to be made between high transaction costs and the certainty of capturing extrinsic value.
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic generation</td>
<td>Volume of power that is "in the money" for a given period in the future (based on forward market prices).</td>
</tr>
<tr>
<td>Clean Spark Spread</td>
<td>Theoretical gross margin of a gas-fired power plant from selling a unit of electricity, having bought the gas and the carbon emission certificate required to produce this unit of electricity.</td>
</tr>
<tr>
<td>Clean Dark Spread</td>
<td>Theoretical gross margin of a coal-fired power plant from selling a unit of electricity, having bought the coal and the carbon emission certificate required to produce this unit of electricity.</td>
</tr>
<tr>
<td>Intrinsic Value</td>
<td>Part of option value that is equal to actual mark-to-market price of underlying (actual value of selling the underlying as forwards)</td>
</tr>
<tr>
<td>Extrinsic Value</td>
<td>Time value of the option (total option value less Intrinsic Value)</td>
</tr>
<tr>
<td>Delta-hedging</td>
<td>A hedging strategy aimed at conserving the full value of an option, i.e. not only the "intrinsic" value, but also the "extrinsic" value.</td>
</tr>
</tbody>
</table>
Split of responsibilities and risk between Trading and generation unit

Trading is responsible for commodity risk management and the optimization three years prior to delivery.
Transfer pricing mechanism for outright power
Understanding Trading’s optimization result using a simplified scheme with an example of Cal 2010 delivery

Handover → transfer price
2010 baseload forward 2007-2010

- Generation unit transfers all 2010 volumes to EET in course of 2007
- **Transfer price** for the transferred volumes is set up (based on 2010 forwards in 2007)

→ **Volume x transfer price** = generation unit result in 2010

Hedging → achieved price
2010 baseload forward 2007-2010

- EET hedges volumes within risk limits
- **Achieved price** by EET evolving with hedging (e.g. for Central Europe this is € 68/MWh for Cal 2010)

→ **Volume x (achieved price – transfer price)** = Trading outright optimization

Delta between external achieved price and internal transfer price for a given year of delivery
is reported in the Trading accounts in the optimization result in the year of delivery
Hedging of E.ON’s outright generation
As of Sep 30, 2011

German, Benelux and French market

2011

2012

2013

Nordic market

2011

2012

2013

~ 59 €/MWh
~ 54 €/MWh
~ 56 €/MWh
~ 43 €/MWh
~ 43 €/MWh
~ 45 €/MWh

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

- percentage band of generation hedged

1. Average realized price only relevant for the pure outright power position (Nuclear/Hydro) sold in the respective year

- The average price of 2010 volumes was ~€55 in 2007 (handover period) => transfer price
- As of June 2010 the average achieved price for outright power at EET’s CE book is ~€68\(^1\)
- Currently a positive transfer effect at EET and a negative one at MU Central Europe

- The average price of 2011 volumes was ~€70 in 2008 (handover period) => transfer price
- As of June 2010 the average achieved price for outright power in EET’s CE book is ~€59\(^1\)
- Currently a negative transfer effect at EET and a positive one at MU Central Europe

Depending on the time of the handover transfer prices may turn out to be higher than average achieved prices

1. For outright power hedging please refer to slide 8
E.ON transfer price - Setting a price for optionality

Visualization of intrinsic and extrinsic value

- **Extrinsic and intrinsic value**
 - E.ON transfer price mainly consists of two elements
 - Intrinsic value: clean spread based on market forward prices (as on previous slide)
 - Extrinsic value: time value of the real option based on changes of market data (e.g. price volatility) and plant characteristics
 - Trading pays a price for the time value of the capacity
 - Value consists of the right (not the obligation) to exchange fuel for electricity (make or buy)
 - For a nuclear power plant the extrinsic value is basically zero
 - For the marginal plant of a system it is very high

Capturing the value of a flexible generation fleet

- Market price for fuel + CO₂ (For gas plants: contract price)
- Probability distribution of future power prices (after convolution for uncertainties)
- Operating hours of the power plant
- Variable Price/costs
Example: make or buy strategy

Two simplified examples...

<table>
<thead>
<tr>
<th>Example 1 - buy (in €/MWh)</th>
<th>t1</th>
<th>t2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locked in clean dark spread</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>New clean dark spread (spot)</td>
<td>-6</td>
<td></td>
</tr>
<tr>
<td>Make (net result)</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Buy (net result)</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example 2 - make (in €/MWh)</th>
<th>t1</th>
<th>t2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locked in clean dark spread</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>New clean dark spread (spot)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Make (net result)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Buy (net result)</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

... for make or buy

• Example 1:
If the real option is out of money at delivery, additional value can be generated above the lock-in price in forward.

• Example 2:
If the real option at a lower spread than hedged but in the money the decision would be to deliver the physical product as hedged.

Extracting the maximal value from flexible power plants
Example: Time spread arbitrage in practice

- It enables E.ON to profit from the shape or trends in the forward curve and exploit flexibilities in storage & contracts:
 - Nordic Hydro: the flexibility of the hydro-power is based on the storage possibilities in the reservoirs
 - Gas storage: Trading manages several storages around Europe with flexibility in selling gas
 - Take or Pay contracts: Trading manages several contracts with flexibility in take-volumes

Creating value from the flexibility in storages and supply contracts

1. Simplified – disregarding the time value of money
E.ON Investor Relations Contact

Sascha Bibert
Head of IR
T +49 2 11-45 79-5 42
sascha.bibert@eon.com

Peter Blankenhorn
Manager
T +49 2 11-45 79-4 81
peter.blankenhorn@eon.com

François Poullet
Manager
T +49 2 11-45 79-3 32
francois.poullet@eon.com

Marc Koebernick
Manager
T +49 2 11-45 79-2 39
marc.koebernick@eon.com

Dr. Stephan Schönefuß
Manager
T +49 2 11-45 79-48 08
stephan.schoenefuss@eon.com

Aleksandr Aksenov
Manager
T +49 2 11-45 79-5 54
aleksandr.aksenov@eon.com

Carmen Schneider
Manager
T +49 2 11-45 79-3 45
carmen.schneider@eon.com

Sabine Burkhardt
Executive Assistant
T +49 2 11-45 79-5 49
sabine.burkhardt@eon.com
E.ON IR and reporting calendar

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 14, 2012</td>
<td>Annual Report 2011</td>
<td>Düsseldorf</td>
</tr>
<tr>
<td>May 3, 2012</td>
<td>AGM 2012</td>
<td>Essen</td>
</tr>
<tr>
<td>May 4, 2012</td>
<td>Dividend payment</td>
<td></td>
</tr>
<tr>
<td>May 9, 2012</td>
<td>Interim Report I: January – March 2012</td>
<td>Düsseldorf</td>
</tr>
<tr>
<td>August 13, 2012</td>
<td>Interim Report II: January – June 2012</td>
<td>Düsseldorf</td>
</tr>
<tr>
<td>November 13, 2012</td>
<td>Interim Report III: January – September 2013</td>
<td>Düsseldorf</td>
</tr>
</tbody>
</table>
This presentation may contain forward-looking statements based on current assumptions and forecasts made by E.ON Group management and other information currently available to E.ON. Various known and unknown risks, uncertainties and other factors could lead to material differences between the actual future results, financial situation, development or performance of the company and the estimates given here. E.ON AG does not intend, and does not assume any liability whatsoever, to update these forward-looking statements or to conform them to future events or developments.